Subglacial hydrology at Kronebreen, Svalbard, published in The Cryosphere

The Cryosphere recently published our work on Kronebreen, a fast-flowing tidewater glacier in Svalbard (click here to see the article). The study examines subglacial hydrology and its influence on basal dynamics over the 2014 melt season, with simultaneous observations of water pressure at the bed, supraglacial lake drainage, meltwater plume activity, and glacier surface velocities. In addition, melt/runoff and hydraulic potential were modelled in order to estimate surface melt production, and the routing of meltwater at the bed. This built a nice record from which we could establish a robust, theoretical picture of how water is channeled at the bed.

One of the key findings is the difference in drainage beneath the north and south regions of the glacier terminus, which is linked to spatial variations in surface velocity. The study also shows a consistently high water pressure at the glacier bed throughout the melt season. These readings were collected from a borehole that was drilled approximately 3 km upglacier of the terminus. Borehole records from tidewater glaciers are rare but the few early studies that currently exist, including this one, suggest that bed conditions at tidewater glaciers are persistently pressurised, with a high hydraulic base-level that permits fast flow.

The Cryosphere Kronebreen site map figure

Figure 1 from the TC paper: The site map of Kronebreen, along with the location of the three groups of supraglacial lakes (C1, C2 and C3) that filled and drained during the 2014 melt season. These lakes were monitored by seven time-lapse cameras, which were installed on the rock outcrops surrounding the glacier tongue (denoted by the orange numbered locations). These lakes drained sequentially in an upglacier fashion, similar to the speed-up event at the beginning of the melt season. The starred location is where the borehole was drilled and the pressure sensor was installed.

The Cryosphere Kronebreen maps

Figure 5 from the TC paper: Sequential velocity maps (left) and velocity change maps (right) of Kronebreen, derived from TerraSAR-X imagery. The south region of the glacier tongue is faster flowing than the north region throughout the melt season. We argue that this reflects a difference in drainage efficiency. An early-season speed-up event is  depicted in the velocity change maps, which originates from the terminus and propagates upglacier. Similar speed-up events occur year-on-year at Kronebreen. These may reflect changes at the terminus early in the melt season which promote longitudinal stretching, and/or reflect a seasonal hydraulic overhaul which promotes basal sliding.


Further reading

The Cryosphere paper

Other studies at Kronebreen (here and here) which show early-season speed-up events

Borehole study at a tidewater glacier in Patagonia 

 

Advertisements